3.977 \(\int \frac{a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=316 \[ \frac{2 b \sqrt{a+b} (B-C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{d}-\frac{2 \sqrt{a+b} (b B-a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 C (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b*Sqrt[a + b]*(B - C)*C
ot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (2*Sqrt[a + b]*(b*B - a*C)*Cot[c + d*x]*EllipticPi[(a
 + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d

________________________________________________________________________________________

Rubi [A]  time = 0.410386, antiderivative size = 316, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 50, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4041, 3916, 3784, 4005, 3832, 4004} \[ \frac{2 b \sqrt{a+b} (B-C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 \sqrt{a+b} (b B-a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 C (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b*Sqrt[a + b]*(B - C)*C
ot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (2*Sqrt[a + b]*(b*B - a*C)*Cot[c + d*x]*EllipticPi[(a
 + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d

Rule 4041

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Csc[e + f*x], x],
 x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3916

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[a*c,
Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Int[(Csc[e + f*x]*(b*c + a*d + b*d*Csc[e + f*x]))/Sqrt[a + b*Csc[e +
f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx &=\frac{\int \sqrt{a+b \sec (c+d x)} \left (b^2 (b B-a C)+b^3 C \sec (c+d x)\right ) \, dx}{b^2}\\ &=\frac{\int \frac{\sec (c+d x) \left (a b^3 C+b^3 (b B-a C)+b^4 C \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{b^2}+(a (b B-a C)) \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 \sqrt{a+b} (b B-a C) \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}+\left (b^2 (B-C)\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx+\left (b^2 C\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 (a-b) \sqrt{a+b} C \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}+\frac{2 b \sqrt{a+b} (B-C) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}-\frac{2 \sqrt{a+b} (b B-a C) \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}\\ \end{align*}

Mathematica [C]  time = 18.093, size = 1232, normalized size = 3.9 \[ \frac{2 b C \cos (c+d x) \sqrt{a+b \sec (c+d x)} (b B-a C+b C \sec (c+d x)) \sin (c+d x)}{d (b C-a \cos (c+d x) C+b B \cos (c+d x))}+\frac{2 \sqrt{a+b \sec (c+d x)} (b B-a C+b C \sec (c+d x)) \left (-b^2 \sqrt{\frac{b-a}{a+b}} C \tan ^5\left (\frac{1}{2} (c+d x)\right )+a b \sqrt{\frac{b-a}{a+b}} C \tan ^5\left (\frac{1}{2} (c+d x)\right )-2 a b \sqrt{\frac{b-a}{a+b}} C \tan ^3\left (\frac{1}{2} (c+d x)\right )+2 i a b B \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac{1}{2} (c+d x)\right )-2 i a^2 C \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac{1}{2} (c+d x)\right )+b^2 \sqrt{\frac{b-a}{a+b}} C \tan \left (\frac{1}{2} (c+d x)\right )+a b \sqrt{\frac{b-a}{a+b}} C \tan \left (\frac{1}{2} (c+d x)\right )-i (a-b) b C E\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}+i (a-b) (a C+b (C-B)) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}+2 i a b B \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}-2 i a^2 C \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}\right )}{\sqrt{\frac{b-a}{a+b}} d \sqrt{b+a \cos (c+d x)} (b C-a \cos (c+d x) C+b B \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x) \sqrt{\frac{1}{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )}} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )-1\right ) \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right )^{3/2} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{\tan ^2\left (\frac{1}{2} (c+d x)\right )+1}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*b*C*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(b*B - a*C + b*C*Sec[c + d*x])*Sin[c + d*x])/(d*(b*C + b*B*Cos[c
+ d*x] - a*C*Cos[c + d*x])) + (2*Sqrt[a + b*Sec[c + d*x]]*(b*B - a*C + b*C*Sec[c + d*x])*(a*b*Sqrt[(-a + b)/(a
 + b)]*C*Tan[(c + d*x)/2] + b^2*Sqrt[(-a + b)/(a + b)]*C*Tan[(c + d*x)/2] - 2*a*b*Sqrt[(-a + b)/(a + b)]*C*Tan
[(c + d*x)/2]^3 + a*b*Sqrt[(-a + b)/(a + b)]*C*Tan[(c + d*x)/2]^5 - b^2*Sqrt[(-a + b)/(a + b)]*C*Tan[(c + d*x)
/2]^5 + (2*I)*a*b*B*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)
/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (
2*I)*a^2*C*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]
*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*a*b*
B*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c +
 d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] -
(2*I)*a^2*C*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)
]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(
a + b)] - I*(a - b)*b*C*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1
- Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a +
 b)] + I*(a - b)*(a*C + b*(-B + C))*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a -
 b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x
)/2]^2)/(a + b)]))/(Sqrt[(-a + b)/(a + b)]*d*Sqrt[b + a*Cos[c + d*x]]*(b*C + b*B*Cos[c + d*x] - a*C*Cos[c + d*
x])*Sec[c + d*x]^(3/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)*(1 + Tan[(c + d*x)/2]^2)^
(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

Maple [B]  time = 0.447, size = 1588, normalized size = 5. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a*b-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^2*(B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*a*b-B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2-2*B*cos(d*x+c)*EllipticPi((-
1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a*b-C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2-C*sin(d*x+c)*cos
(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2+2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*cos(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2+C*si
n(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elliptic
E((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+C*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/
2))*cos(d*x+c)*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c
)+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c)
)/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)-B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-2*B*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),
-1,((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)-C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-C*(cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))
^(1/2))*b^2*sin(d*x+c)+2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*E
llipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+C*EllipticE((-1+cos(d*x+c))/sin(d*
x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*si
n(d*x+c)*a*b+C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-C*cos(d*x+c)^2*a*b+C*cos(d*x+c)*a*b-C*cos(d*x+c)*b
^2+b^2*C)/sin(d*x+c)^5/(b+a*cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C b \sec \left (d x + c\right ) - C a + B b\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c) - C*a + B*b)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - B b \sqrt{a + b \sec{\left (c + d x \right )}}\, dx - \int C a \sqrt{a + b \sec{\left (c + d x \right )}}\, dx - \int - C b \sqrt{a + b \sec{\left (c + d x \right )}} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a**2*C+b**2*B*sec(d*x+c)+b**2*C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

-Integral(-B*b*sqrt(a + b*sec(c + d*x)), x) - Integral(C*a*sqrt(a + b*sec(c + d*x)), x) - Integral(-C*b*sqrt(a
 + b*sec(c + d*x))*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)/sqrt(b*sec(d*x + c) + a), x)